<html data-lt-installed="true">
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body style="padding-bottom: 1px;">
Olá a todos,<br>
<br>
Durante a próxima semana haverá duas palestras relativas a tópicos<br>
de Visão por Computador. Em ambas as palestras se discutem as<br>
aplicações da estimação de rectas 3D a partir de dados como<br>
câmaras, LIDARs e sensores equivalentes. <br>
<br>
A 1ª palestra terá lugar no Anfiteatro do ISR, às 11 horas do dia<br>
23 de Maio e terá como tópico "Análise de Rectas em Superfícies<br>
com Simetria Rotacional. Título e bio:<br>
<br>
________________________________________________<br>
<br>
<p class="MsoNormal"><u><b><span style="mso-fareast-language:EN-US"
lang="EN-US">Calculus of lines on surfaces with rotational
symmetry</span></b></u></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US">In this talk we focus on 3D-surfaces that are swept
by a moving line <br>
</span></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US">that rotates around a fixed axis. These surfaces
appear in CAD and engineering<br>
applications with Galvano laser scanners, Lidars, rotating
camera's, <br>
moving robot joint axes, etc...</span></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US">We explain how we can represent a ruled surface of
revolution by 3 lines, <br>
such that each of its lines is obtained as a linear combination
of this triple. <br>
Furthermore, the coefficients of these linear combinations can
be <br>
directly expressed in function of the rotation angles.
</span>
</p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US">As an application we briefly show how these linear
combinations <br>
provide an alternative calibration model for certain 3D-sensors,
<br>
avoiding the determination of intrinsic parameters.</span>
</p>
<p class="MsoNormal"><u><b><span style="mso-fareast-language:EN-US"
lang="EN-US">Bio:</span></b></u></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US">Rudi Penne has been trained as a mathematician at
the <br>
University of Antwerp (Belgium), where he received his doctorate
in 1992, <br>
in the twilight zone between algebra, combinatorial and
projective geometry, <br>
and mechanical applications. His current position is a logical <br>
continuation of his PhD research: professor at the<br>
faculty of applied engineering of the University of Antwerp.
</span>
</p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US">His main fields of interest: computer vision
(geometric modelling <br>
and calibration), projective (line) geometry, rigidity theory
and <br>
combinatorial/computational geometry).</span></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US">A significant portion of his time is dedicated to
the popularization <br>
and communication of maths to a broad public.</span></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US">______________________________________________________________________<br>
</span></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US"> A segunda "talk" terá lugar também no Anfiteatro
do ISR, às 14h 30m do dia<br>
24 de Maio e terá como tópico a relação entre estimação de
rectas em 3D e<br>
"machine learning". <br>
</span></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US">Título e bio:<br>
</span></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US">__________________________________________________________<br>
</span></p>
<div dir="auto"><br>
</div>
<div dir="auto"><u><b>On straight lines and how machine learning
screws them</b></u></div>
<div dir="auto"><br>
</div>
<div dir="auto"><br>
</div>
<div dir="auto">Straight lines appear in a wide variety of
industrial applications and <br>
measuring techniques, such as robotics, LiDAR, cameras, 3D laser <br>
scanners, … . After providing a few examples, we review the basics
<br>
of line geometry: Plücker coordinates for straight lines, the
Klein <br>
quadric and a little bit of screw theory. Armed with this
knowledge, <br>
we revisit the earlier examples. In the second half, we present
challenges <br>
we face when we apply constrained Gaussian process regression to
predict <br>
straight lines and not just numbers (the same goes for any machine
learning <br>
technique in a generative setting). We look at two use cases: the
calibration <br>
of a galvanometric laser setup and the approximation of point
clouds using <br>
line elements. This talk covers a large range of theoretical
concepts<br>
in an intuitive and visual way.</div>
<div dir="auto"><br>
</div>
<div dir="auto"> </div>
<div dir="auto"><u><b>Bio</b></u><br>
</div>
<div dir="auto"><br>
</div>
<div dir="auto">Ivan De Boi received his master’s degree in
electronics and ICT <br>
from the University of Antwerp, Antwerp, Belgium, in 2001. After
working as a <br>
Project Engineer for seven years in industry, he became a Lecturer
at the Karel <br>
de Grote University College, Antwerp. Apart from his teaching
assignment, he also <br>
worked on various research projects in the field of artificial
intelligence and AR/VR, <br>
mainly in healthcare and Industry 4.0 context. In 2020, he joined
the <br>
Research Group InViLab, University of Antwerp, to work on
calibration <br>
procedures of 3D sensors using line variety models.</div>
<div dir="auto"><br>
______________________________________________________________<br>
<br>
Cordiais saudações académicas,<br>
<br>
Helder Araújo<br>
<br>
<br>
<br>
</div>
<p class="MsoNormal"><span style="mso-fareast-language:EN-US"
lang="EN-US"></span></p>
</body>
<lt-container></lt-container>
</html>